Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; : 114292, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636883

RESUMO

Artificial Oxygen Carriers (AOCs) have emerged as ground-breaking biomedical solutions, showcasing tremendous potential for enhancing human health and saving lives. Perfluorocarbon (PFC)-based AOCs, in particular, have garnered significant interest among researchers, leading to numerous clinical trials since the 1980 s. However, despite decades of exploration, the success rate has remained notably limited. This comprehensive review article delves into the landscape of clinical trials involving PFC compounds, shedding light on the challenges and factors contributing to the lack of clinical success with PFC nanoparticles till date. By scrutinizing the existing trials, the article aims to uncover the underlying issues like pharmacological side effects of the PFC and the nanomaterials used for the designing, complex formulation strategy and poor clinical trial designs of the formulation. More over each generation of the PFC formulation were discussed with details for their failure in the clinical trials limitations that block the path of PFC-based AOCs' full potential. Furthermore, the review emphasizes a forward-looking approach by outlining the future pathways and strategies essential for achieving success in clinical trials. AOCs require advanced yet biocompatible single-componentformulations. The new trend might be a novel drug delivery technique, like gel emulsion or reverse PFC emulsion with fluoro surfactants. Most importantly, well-planned clinical trials may end in a success story.

2.
J Mater Chem B ; 12(4): 991-1000, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193597

RESUMO

Hair dermal papilla cells (hDPCs) play a crucial role in hair growth and regeneration, and their function is influenced by nutrient and oxygen supply. A microenvironment with significantly low oxygen (O2) levels, known as anoxic conditions (<0.2%) due to oxygen deficiency, hinders hDPC promotion and retards hair regrowth. Here, a nanoemulsion (NE) based on perfluorooctyl bromide (PFOB), a member of the perfluorocarbon family, is presented to provide a sustainable O2 supply and maintain physical stability in vitro. The PFOB-NE has been shown to continuously release oxygen for 36 h, increasing and maintaining the O2 concentration in the anoxic microenvironment of up to 0.8%. This sustainable O2 supply using PFOB-NE has promoted hDPC growth and also induced a complex cascade of effects. These effects encompass regulation via inhibiting lactate accumulation caused via oxygen deficiency, increasing lactate dehydrogenase activity, and promoting the expression of genes, such as the hypoxia-inducible factor 1 family and NADPH oxidase 4 under anoxic conditions. Sustained O2 supply is shown to enhance human hair organ elongation approximately four times compared to the control under anoxic conditions. In conclusion, the perfluorocarbon-based NE containing oxygen proves to be an important strategic tool for improving hair growth and alleviating hair loss.


Assuntos
Fluorocarbonos , Hidrocarbonetos Bromados , Hipóxia , Humanos , Oxigênio/metabolismo , Fluorocarbonos/farmacologia , Cabelo
3.
Pharmaceutics ; 15(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376117

RESUMO

The purpose of this study is to develop and evaluate a self-microemulsifying drug delivery system (SMEDDS) to improve the oral absorption of poorly water-soluble olaparib. Through the solubility test of olaparib in various oils, surfactants and co-surfactants, pharmaceutical excipients were selected. Self-emulsifying regions were identified by mixing the selected materials at various ratios, and a pseudoternary phase diagram was constructed by synthesizing these results. The various physicochemical properties of microemulsion incorporating olaparib were confirmed by investigating the morphology, particle size, zeta potential, drug content and stability. In addition, the improved dissolution and absorption of olaparib were also confirmed through a dissolution test and a pharmacokinetic study. An optimal microemulsion was generated in the formulation of Capmul® MCM 10%, Labrasol® 80% and PEG 400 10%. The fabricated microemulsions were well-dispersed in aqueous solutions, and it was also confirmed that they were maintained well without any problems of physical or chemical stability. The dissolution profiles of olaparib were significantly improved compared to the value of powder. Associated with the high dissolutions of olaparib, the pharmacokinetic parameters were also greatly improved. Taken together with the results mentioned above, the microemulsion could be an effective tool as a formulation for olaparib and other similar drugs.

4.
Pharmaceutics ; 15(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242754

RESUMO

The straightforward synthesis of three cationic boron-dipyrromethene (BODIPY) derivatives and their mitochondria-targeting and photodynamic therapeutic (PDT) capabilities are reported. Two cancer cell lines (HeLa and MCF-7) were used to investigate the PDT activity of the dyes. Compared to their non-halogenated counterparts, halogenated BODIPY dyes exhibit lower fluorescence quantum yields and enable the efficient production of singlet oxygen species. Following LED light irradiation at 520 nm, the synthesized dyes displayed good PDT capabilities against the treated cancer cell lines, with low cytotoxicity in the dark. In addition, functionalization of the BODIPY backbone with a cationic ammonium moiety enhanced the hydrophilicity of the synthesized dyes and, consequently, their uptake by the cells. The results presented here collectively demonstrate the potential of cationic BODIPY-based dyes as therapeutic drugs for anticancer photodynamic therapy.

5.
Pharmaceutics ; 15(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986792

RESUMO

This study aimed to develop electrolyte complexes of paliperidone (PPD) with various particle sizes using cation-exchange resins (CERs) to enable controlled release (both immediate and sustained release). CERs of specific particle size ranges were obtained by sieving commercial products. PPD-CER complexes (PCCs) were prepared in an acidic solution of pH 1.2 and demonstrated a high binding efficiency (>99.0%). PCCs were prepared with CERs of various particle sizes (on average, 100, 150, and 400 µm) at the weight ratio of PPD to CER (1:2 and 1:4). Physicochemical characterization studies such as Fourier-transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy between PCCs (1:4) and physical mixtures confirmed PCC formation. In the drug release test, PPD alone experienced a complete drug release from PCC of >85% within 60 min and 120 min in pH 1.2 and pH 6.8 buffer solutions, respectively. Alternatively, PCC (1:4) prepared with CER (150 µm) formed spherical particles and showed an almost negligible release of PPD in pH 1.2 buffer (<10%, 2 h) while controlling the release in pH 6.8 buffer (>75%, 24 h). The release rate of PPD from PCCs was reduced with the increase in CER particle size and CER ratio. The PCCs explored in this study could be a promising technology for controlling the release of PPD in a variety of methods.

6.
Pharmaceutics ; 15(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36986851

RESUMO

Dry eye disease is a multifactorial disorder of the eye and tear film with potential damage to the ocular surface. Various treatment approaches for this disorder aim to alleviate disease symptoms and restore the normal ophthalmic environment. The most widely used dosage form is eye drops of different drugs with 5% bioavailability. The use of contact lenses to deliver drugs increases bioavailability by up to 50%. Cyclosporin A is a hydrophobic drug loaded onto contact lenses to treat dry eye disease with significant improvement. The tear is a source of vital biomarkers for various systemic and ocular disorders. Several biomarkers related to dry eye disease have been identified. Contact lens sensing technology has become sufficiently advanced to detect specific biomarkers and predict disease conditions accurately. This review focuses on dry eye disease treatment with cyclosporin A-loaded contact lenses, contact lens biosensors for ocular biomarkers of dry eye disease, and the possibility of integrating sensors in therapeutic contact lenses.

7.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768682

RESUMO

Cyclosporine A (CsA) as an eye drop is an effective treatment for dry eye. However, it has potential side effects and a short ocular residence time. To overcome these obstacles, we developed a cellulose acetate phthalate-based pH-responsive contact lens (CL) loaded with CsA (CsA-CL). The CsA was continuously released from the CsA-CL at physiological conditions (37 °C, pH 7.4) without an initial burst. CsA was well-contained in the selected storage condition (4 °C, pH 5.4) for as long as 90 days. In safety assays, cytotoxicity, ocular irritation, visible light transmittance, and oxygen permeability were in a normal range. CsA concentrations in the conjunctiva, cornea, and lens increased over time until 12 h. When comparing the therapeutic efficacy between the normal control, experimental dry eye (EDE), and treatment groups (CsA eye drop, naïve CL, and CsA-CL groups), the tear volume, TBUT, corneal fluorescein staining at 7 and 14 days, conjunctival goblet cell density, and corneal apoptotic cell counts at 14 days improved in all treatment groups compared to EDE, with a significantly better result in the CsA-CL group compared with other groups (all p < 0.05). The CsA-CL could be an effective, stable, and safe option for inflammatory dry eye.


Assuntos
Lentes de Contato , Síndromes do Olho Seco , Humanos , Ciclosporina/uso terapêutico , Síndromes do Olho Seco/tratamento farmacológico , Lágrimas , Soluções Oftálmicas/uso terapêutico , Concentração de Íons de Hidrogênio
8.
J Pharm Investig ; 53(1): 153-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35935469

RESUMO

Background: Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection, and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients. To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen transportation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for effective oxygen transport. Area covered: This review article provides an overview of the formulation, storage, shelf-life, clinical application, side effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical (in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/nanobubbles, have also been elucidated. Expert opinion: Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.

9.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233203

RESUMO

Mesoporous silica nanoparticles (MSNPs) have been widely used for the delivery of different hydrophilic and hydrophobic drugs owing to their large surface area and ease of chemical alteration. On the other hand, triphenylphosphonium cation (TPP+) with high lipophilicity has a great mitochondrial homing property that stimulates the internalization of drugs into cells. Therefore, we designed a TPP-modified MSNP to enhance the algicidal activity of our new algicidal agent cyclohexyl-(3,4-dichlorobenzyl) amine (DP92). In this study, algicidal activity was evaluated by assessing the growth rate inhibition of two harmful algal blooms (HABs), Heterosigma akashiwo and Heterocapsa circularisquama, after treatment with DP92-loaded MSNP or TPP-MSNP and DP92 in DMSO (as control). For H. akashiwo, the IC50 values of TPP-MSNP and MSNP are 0.03 ± 0.01 and 0.16 ± 0.03 µM, respectively, whereas the value of the control is 0.27 ± 0.02 µM. For H. circularisquama, the IC50 values of TPP-MSNP and MSNP are 0.10 ± 0.02 and 0.29 ± 0.02 µM, respectively, whereas the value of the control is 1.90 ± 0.09 µM. Results have indicated that TPP-MSNP efficiently enhanced the algicidal activity of DP92, signifying the prospect of using DP92-loaded TPP-MSNP as an algicidal agent for the superior management of HABs.


Assuntos
Dinoflagelados , Nanopartículas , Aminas , Dimetil Sulfóxido , Proliferação Nociva de Algas , Nanopartículas/química , Dióxido de Silício/química
10.
Pharmaceutics ; 14(8)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36015320

RESUMO

Alectinib hydrochloride (ALH), a tyrosine kinase inhibitor, is a practically water-insoluble drug classified as BCS class IV. The present study aimed to develop novel suspended self-nanoemulsifying drug delivery system (Su-SNEDDS) to enhance the solubility and dissolution rate. The Su-SNEDDS was prepared by saturation and suspension of ALH in SNEDDS with ultrasonication energy. According to evaluation by the dispersion test and the results of particle size analysis, the selected SNEDDS composed of Kolliphor HS 15 and Capmul MCM C8 as surfactant and oil, respectively, showed a complete dissolution within 30 min. However, the SNEDDS loaded and solubilized only small amount of ALH (<0.6%, w/w). On the other hand, 10% ALH-loaded Su-SNEDDS containing small and micronized ALH particles of <5 µm had about 20-fold higher ALH-loading% than the SNEDDS and reached a 100% dissolution rate within 30 min in 1% sodium lauryl sulfate (SLS) pH 1.2 buffer. In the dispersion test and microscopic observation, micronized ALH particles in the Su-SNEDDS were readily dispersed in the dissolution medium with spontaneous nanoemulsion formation and instantly solubilized with the aid of SLS. Taken together, our results suggest that the Su-SNEDDS would be a potent oral dosage form to enhance the solubilization and dissolution rate of ALH in a new technological way.

11.
J Nanosci Nanotechnol ; 21(7): 3679-3682, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715673

RESUMO

Formation of an electrolyte complex using the electrostatic interactions between a polyanionic polymer and a cationic drug is a simple and efficient method of preparing a colloidal drug carrier system. Dextran sulfate, with a negatively charged sulfate group, was reacted in an acetate buffer solution of pH 3 with positively charged 1° amine, 2° amine, 3° amine, piperazine, and piperidine structures from 24 small-molecule drugs. The electrolyte complex was formed from 15 drugs, 63% of those tested. The tendency to form the electrolyte complex was in the order of piperazine and piperidine >3° amine >>2° amine. The drugs with the 1° amine structure failed to form an electrolyte complex. The mean particle sizes were in the range of 50-740 nm, and most of them showed a submicron colloidal dispersion of <400 nm. Regarding drug encapsulation efficiency (%), 11 drugs with piperazine, piperidine, and 3° amine structures showed 60-98% efficiency, which was fairly high. The results suggest that directly forming the electrolyte complex with dextran sulfate yields promising structural attributes as a submicron colloidal drug carrier system.


Assuntos
Aminas , Portadores de Fármacos , Sulfato de Dextrana , Eletrólitos , Tamanho da Partícula
12.
Adv Exp Med Biol ; 1249: 143-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32602096

RESUMO

Extracellular vesicles (EVs) are nanosized membrane particles secreted by cells to convey intercellular information. In recent years, EVs have enticed scientists owing to their prevalent distribution, enormous possibility as therapeutic aspirants, and probable roles as disease biomarkers. As natural transporters in the endogenous communication system, they play a role in protein, lipid, miRNA, mRNA, and DNA transport. In this chapter, we recapitulate the roles of EVs in the vast field of regenerative medicine. This summary mainly describes the potential roles of EVs in the regeneration of extensively studied organs or tissues, such as the heart, kidney, lung, liver, skin, and hair. Furthermore, EV can also transport drugs and corroborate their uptake by target cells through endocytosis; therefore, this chapter also highlights the use of EVs in the field of drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Vesículas Extracelulares , Medicina Regenerativa/tendências , Transporte Biológico , Endocitose , Humanos
13.
J Nanosci Nanotechnol ; 20(9): 5813-5818, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331187

RESUMO

The purpose of this study is to identify the effects of a stabilizer and matrix former in the development of a celecoxib dried nanosuspension (DNS) for high dissolution rate and drug loading. Tween 80 and Hydroxypropyl Methylcellulose (HPMC) were used as stabilizers in the bead-milling process and dextrin was used as the matrix former in the spray-drying. Various nanosuspensions (NS) were prepared by varying the ratio of HPMC and dextrin, and the physicochemical properties of each formulation were evaluated for particle size, morphology, drug loading, crystallinity, redispersibility, physical stability and dissolution rate. HPMC efficiently stabilized the NS system and reduced the particle size of NS. The mean particle size of the NS with 0.5% HPMC (w/v) was the smallest (248 nm) of all formulations. Dextrin has been shown to inhibit the increase of particle size efficiently, which is known to occur frequently when NS is being solidified. As the dextrin increased in DNS, the dissolution rates of reconstituted NS were significantly improved. However, it was confirmed that more than the necessary amount of dextrin in DNS reduced the dissolution and drug loading. The dissolution of celecoxib in DNS prepared at the ratio (drug:dextrin, 1:2.5) was almost the highest. The dissolution of optimal formulation was 95.8% at 120 min, which was 2.0-fold higher than that of NS dried without dextrin. In conclusion, these results suggest that the formulation based on Tween 80, HPMC and dextrin may be an effective option for DNS to enhance its in vitro dissolution and in vivo oral absorption.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Disponibilidade Biológica , Dextrinas , Composição de Medicamentos , Derivados da Hipromelose , Tamanho da Partícula , Solubilidade , Suspensões , Água
14.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093241

RESUMO

A series of hydrogels with intrinsic antifouling properties was prepared via surface-functionalization of poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based hydrogels with the biomembrane-mimicking zwitterionic polymer, poly(2-methacryloyloxyethyl phosphorylcholine) [p(MPC)]. The p(MPC)-modified hydrogels have enhanced surface wettability, high water content retention (61.0%-68.3%), and good transmittance (>90%). Notably, the presence of zwitterionic MPC moieties at the hydrogel surfaces lowered the adsorption of proteins such as lysozyme and bovine serum albumin (BSA) by 73%-74% and 59%-66%, respectively, and reduced bacterial adsorption by approximately 10%-73% relative to the unmodified control. The anti-biofouling properties of the p(MPC)-functionalized hydrogels are largely attributed to the dense hydration layer formed at the hydrogel surfaces by the zwitterionic moieties. Overall, the results demonstrate that biocompatible and antifouling hydrogels based on p(HEMA)-p(MPC) structures have promising potential for application in biomedical materials.

15.
Arch Pharm Res ; 43(1): 58-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956965

RESUMO

Cancer immunotherapy orchestrates the immune system of the human body to fight against cancer cells. By doing this, it has revolutionized cancer treatment. Toxicities arising from dose-limit and low rates of patient response continue to be the major bottlenecks in clinical outcomes. The immune system has a close relationship with tumor. This leads to the combination of nanotechnology and immunotherapy. Nanotechnology can potentiate the efficacy of immunotherapy by enhancing the delivery and retention, and narrowing the toxicity of immunomodulation. In this regard, immunotherapy can combine with nanomedicine to give strategies that could lessen the side effects and improve clinical outcomes in patient populations. In this review, we explore and recapitulate recent advances in nanoparticle-based cancer immunotherapy.


Assuntos
Imunoterapia , Nanotecnologia , Neoplasias/terapia , Animais , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/imunologia
16.
Int J Nanomedicine ; 14: 5449-5475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409998

RESUMO

PURPOSE: We created and evaluated an enhanced topical delivery system featuring a combination of highly skin-permeable growth factors (GFs), quercetin (QCN), and oxygen; these synergistically accelerated re-epithelialization and granulation tissue formation of/in diabetic wounds by increasing the levels of GFs and antioxidants, and the oxygen partial pressure, at the wound site. METHODS: To enhance the therapeutic effects of exogenous administration of GFs for the treatment of diabetic wounds, we prepared highly skin-permeable GF complexes comprised of epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), platelet-derived growth factor-A (PDGF-A), and basic fibroblast growth factor (bFGF), genetically attached, via the N-termini, to a low-molecular-weight protamine (LMWP) to form LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and LMWP-bFGF, respectively. Furthermore, quercetin (QCN)- and oxygen-carrying 1-bromoperfluorooctane (PFOB)-loaded nanoemulsions (QCN-NE and OXY-PFOB-NE) were developed to improve the topical delivery of QCN and oxygen, respectively. After confirming the enhanced penetration of LMWP-GFs, QCN-NE, and oxygen delivered from OXY-PFOB-NE across human epidermis, we evaluated the effects of combining LMWP-GFs, QCN-NE, and OXY-PFOB-NE on proliferation of keratinocytes and fibroblasts, and the chronic wound closure rate of a diabetic mouse model. RESULTS: The optimal ratios of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, LMWP-bFGF, QCN-NE, and OXY-PFOB-NE were 1, 1, 0.02, 0.02, 0.2, and 60, respectively. Moreover, a Carbopol hydrogel containing LMWP-GFs, QCN-NE, and OXY-PFOB-NE (LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL) significantly improved scratch-wound recovery of keratinocytes and fibroblasts in vitro compared to that afforded by hydrogels containing each component alone. LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL significantly accelerated wound-healing in a diabetic mouse model, decreasing wound size by 54 and 35% compared to the vehicle and LMWP-GFs, respectively. CONCLUSION: LMWP-GFs/QCN-NE/OXY-PFOB-NE-GEL synergistically accelerated the healing of chronic wounds, exerting both rapid and prolonged effects.


Assuntos
Diabetes Mellitus/patologia , Hidrogéis/química , Fator de Crescimento Insulin-Like I/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Oxigênio/metabolismo , Quercetina/farmacologia , Absorção Cutânea , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Modelos Animais de Doenças , Emulsões/química , Fator de Crescimento Epidérmico/farmacologia , Epiderme/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Peso Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Octanos/química , Fator de Crescimento Derivado de Plaquetas/farmacologia , Protaminas/química , Absorção Cutânea/efeitos dos fármacos
17.
J Nanosci Nanotechnol ; 19(2): 1184-1187, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360230

RESUMO

The aim of this study is to develop nanosuspension for improved dissolution of poorly water-soluble celecoxib. We first prepared coarse suspension of celecoxib with Tween 80 and hydroxypropyl methylcellulose as stabilizers, and then fabricated nanosuspension using the bead milling technique. Depending on milling time, the physical properties of nanosuspension were evaluated by photon correlation spectroscopy (e.g., particle size and distribution) and scanning electron microscopy (SEM) (e.g., morphology). As results, the mean size of crystalline celecoxib particles was highly reduced (368.1±14.5 nm) as milling process proceeded comparing to celecoxib powder (6.5±1.0 µm). Morphology of milled celecoxib particles has changed considerably from bar-shape or plate-shape to needle-shape due to a high energy caused by milling. In the dissolution test, the celecoxib nanosuspension showed an improved dissolution profile at pH 1.2 compared to celecoxib powder (less than 1%). In contrast, 53.4% of celecoxib in nanosuspension was dissolved up to 30 minutes, demonstrating improved dissolution of celecoxib. Taken together, bead-milled nanosuspension could be an effective strategy that can improve the dissolution and bioavailability.


Assuntos
Nanopartículas , Disponibilidade Biológica , Celecoxib , Tamanho da Partícula , Solubilidade , Suspensões
18.
Bioconjug Chem ; 29(11): 3757-3767, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30372043

RESUMO

Tumor-derived exosomes are bound and internalized to organ-specific cells, affecting metastasis. Heparan sulfate proteoglycans mediate the interaction between cells and exosomes. Exosome transfer to the recipient cell can be competitively blocked by heparinoids, because heparin is structurally similar to heparan sulfate. It is hypothesized that there may be structural requirements of heparinoids to attenuate the cellular uptake and metastatic activity of tumor-derived exosomes. Here, we compared the properties of unfractionated heparin (UFH), glycol-split UFH, low-molecular-weight heparin (LMWH), glycol-split LMWH, and ultra-LMWH premixed with A549-derived exosomes. Uptake of A549-derived exosomes (0.1 mg/mL) into BEAS-2B cells was significantly blocked by 0.4 mg/mL of heparinoids. Heparinoids attenuated migration of BEAS-2B cells stimulated by A549-derived exosomes. Glycol-split LMWH with no antifactor Xa activity exhibited the strongest antimigratory effects than other heparinoids. Thus, heparinoids with proper molecular weight and structure can inhibit tumor-derived exosomes, not proportionally to the anticoagulant activity.


Assuntos
Anticoagulantes/farmacologia , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Heparina/farmacologia , Neoplasias/metabolismo , Células A549 , Anticoagulantes/química , Linhagem Celular , Exossomos/patologia , Heparina/química , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/farmacologia , Heparinoides/química , Heparinoides/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
19.
Pharmaceutics ; 10(3)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158472

RESUMO

This study aims at developing and evaluating reconstitutable dry suspension (RDS) improved for dissolution rate, oral absorption, and convenience of use of poorly water-soluble celecoxib (CXB). Micro-sized CXB particle was used to manufacture nanosuspension by using bead milling and then RDS was made by spray-drying the nanosuspension with effective resuspension agent, dextrin. The redispersibility, morphology, particle size, crystallinity, stability, dissolution, and pharmacokinetic profile of the RDS were evaluated. RDS was effectively reconstituted into nanoparticles in 775.8 ± 11.6 nm. It was confirmed that CXB particles are reduced into needle-shape ones in size after the bead-milling process, and the description of CXB was the same in the reconstituted suspension. Through the CXB crystallinity study using differential scanning calorimetry (DSC) and XRD analysis, it was identified that CXB has the CXB active pharmaceutical ingredient (API)'s original crystallinity after the bead milling and spray-drying process. In vitro dissolution of RDS was higher than that of CXB powder (93% versus 28% dissolution at 30 min). Furthermore, RDS formulation resulted in 5.7 and 6.3-fold higher area under the curve (AUC∞) and peak concentration (Cmax) of CXB compared to after oral administration of CXB powder in rats. Collectively, our results suggest that the RDS may be a potential oral dosage formulation for CXB to improve its bioavailability and patient compliance.

20.
J Nanosci Nanotechnol ; 18(2): 898-901, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448513

RESUMO

Nanostructured supramolecular assemblies with hydrophobic cavities are used for improving the solubility, bioavailability, and stability of poorly water soluble drugs. In particular, host-guest inclusion using 2-hydroxypropyl-beta-cyclodextrin (HP-ß-CD) is a typical approach in the pharmaceutical field. In this study, celecoxib (CXB), a cyclooxygenase-2 selective nonsteroidal anti-inflammatory drug (NSAID), was used as the model drug (guest material) and effectively incorporated into HP-ß-CD (host material). After forming a complete complex of HP-ß-CD and CXB, 1-adamantylamine (ADA) was used to allow CXB to be released from the HP-ß-CD in a concentration-dependent manner. This was revealed from Fourier-transform infrared spectroscopy and drug dissolution studies. Notably, the use of ADA, which is a high-affinity guest molecule, with cyclodextrin accelerated the removal of CXB from the host material through the exchange of guest molecules. Taken together, the host-guest based approach using a second guest molecule is useful for regulating on-demand drug release and could therefore be a potential tool for biomedical applications.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Ciclodextrinas/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Varredura Diferencial de Calorimetria , Celecoxib/administração & dosagem , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanotecnologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...